

#### LA-UR-18-27397

Approved for public release; distribution is unlimited.

Title: Sensitivity Analysis and Uncertainty Quantification of the Feynman Y

and Sm2

Author(s): Clark, Alexander Rich

Favorite, Jeffrey A.

Intended for: Report

Issued: 2018-08-03



# Sensitivity Analysis and Uncertainty Quantification of the Feynman Y and $\mathrm{Sm}_2$

Alexander Clark<sup>1,2</sup> and Jeffrey A. Favorite<sup>1</sup>



<sup>1</sup>Los Alamos National Laboratory

X-Computational Physics

Monte Carlo Methods, Codes, and Applications

<sup>2</sup>North Carolina State University



LA-UR-XXXXXX

## **Bayo Canyon Trail Hike**



### **Alexander Clark (XCP-3)**

- Educational Background
  - BS, Nuclear Engineering, ISU, 2014
  - o PhD, Nuclear Engineering, NCSU, 2019
- X-Computational Physics
  - Monte Carlo Methods, Codes, and Applications
  - Jeffrey A. Favorite



**NC STATE** UNIVERSITY





- Research
  - Sensitivity analysis and uncertainty quantification of the Feynman Y and Sm<sub>2</sub>
  - Data assimilation of nuclear cross sections applied to neutron multiplicity counting experiments

#### **Research Overview and Motivation**







- Neutron multiplicity counting (NMC) is a method of NDA of SNM
- Fission chain-reactions are a non-Poisson distributed process
- Feynman Y used to infer integral properties of SNM e.g. neutron lifetime/multiplication
- Sm<sub>2</sub> is independent of the detector response function
- Reliable characterization of SNM requires SA/UQ of Y and Sm<sub>2</sub>





#### Research Approach

- PARTISN simulations of neutron multiplicity counting of a 4.5 kg sphere of weapons grade plutonium metal (BeRP ball)
  - Counted with the nPod neutron multiplicity counter
  - Simulated with:
    - No reflector
    - 3.8 cm of polyethylene
- First-order, adjoint-based perturbation theory SA approach by Sean O'Brien

BeRP ball nested in polyethylene reflectors



nPod neutron multiplicity counter



#### **Summary of Results**

- Sm<sub>2</sub> has less uncertainty due to nuclear cross sections than Y
- NDA of SNM using Y may be preferred if the detector response function is known a priori
- Invariance of Sm<sub>2</sub> to detector response function makes its relationship to reflector thickness or neutron multiplication useful



